Dr Nicola Maher

Research/DECRA Fellow
Chief Investigator for the the ARC Centre of Excellence for Climate Extremes, Chief Investigator for the the ARC Centre of Excellence for Weather of the 21st Century, PhD (UNSW 2016)

Content navigation

Affiliations

  Groups

Research interests

My research uses global coupled climate models to investigate the dynamics, impacts and future changes modes of climate variability. My research interests lie in the following areas:

  1. Single Model Initial-Condition Large Ensemble (SMILE ) modelling -investigate the forced response to greenhouse gases and internal variability
  2. Develop/leverage new tools - machine learning/artificial intelligence (e.g. neural networks, long-term short-term memory network, ensemble classifiers)
  3. Understand future projections - particularly projections of internal variability and extreme events
  4. ENSO research - dynamics, teleconnections and ENSO itself in a warming world

Projects

Teaching information

I teach 4 weeks on climate modelling, dynamics and models of variability as well as the fieldtrip of https://programsandcourses.anu.edu.au/course/emsc3039 

I teach a half day on climate models into https://programsandcourses.anu.edu.au/course/envs8003 

 

Supervised students

Location

J7.210

Publications

Image

Google Scholar Profile: scholar.google.com/citations

Journal Publications (33)

Submitted (6)

  1. Suarez‑Gutierrez, L. and Maher, N.*. Temperature variability projections remain uncertain after constraining them to best
    performing SMILEs submitted to Nature Communications *co‑first author
     
  2. Satpathy, S., Franzke, C., Yuan, N., Maher, N., Park, W. and Lee, S‑S. Anthropogenic Climate Change‑driven Atmospheric
    Angular Momentum Increases Length of Day submitted to Science Advances
     
  3. King A.D., Alastrué de Asenjo, E., Maycock, A., Ziehn, T., Borowiak, A.R., Clark, S. and Maher, N. Detectability of post‑net zero
    climate changes and the effects of delay in emissions cessation submitted to Earth’s Future
     
  4. Maher, N., Phillips, A.S., Deser, C., Jnglin Wills, R.C., Lehner, F., Fasullo, J., Caron, J.M., Brunner, L. and Beyerle, U. The
    updated Multi‑Model Large Ensemble Archive and the Climate Variability Diagnostics Package: New tools for the study
    of climate variability and change. submitted to Geoscientific Model development
  5. Holgate1, C.M., Falster, G.M., Gillett, Z.E., Goswami, P., Grant, M.O., Hobeichi, S., Hoffmann, D., Jiang, X., Jin, C., Lu, X., Mu,
    M., Page, J.C., Parker, T.J., Vogel, E., Abram, N.J., Evans, J.P., Gallant, A.J.E., Henley, B.J., Kala, J., King, A.D., Maher, N.,
    Nguyen, H., Pitman, A.J., Power, S.B., Rauniyar, S.P., Taschetto, A.S. and Ukkola, A.M.  Physical mechanisms of drought
    development, intensification and termination: an Australian review. submitted to Communications Earth & Environ‑
    ment
  6. Xing, C., Stevenson, S., Di Lorenzo, E., Newman, M., Capotondi, A. Fasullo, J.T., Maher, N., Apparent Changes in Pacific
    Decadal Variability Caused by Anthropogenically‑Induced Mean State Modulations. submitted to Geophysical Research
    Letters

Published (27)

  1. Amaya, D.J., Maher, N., Deser, C., Jacox, M.G., Alexander, M.A., Newman, M., Dias, J. and Lou, J. Linking Projected Changes
    in Seasonal Climate Predictability and ENSO Amplitude Journal of Climate, 38, 675–688, https://doi.org/10.1175/JCLI‑
    D‑23‑0648.1
  2. King, A.D., Ziehn, T., Chamberlain, M., Borowiak A.R., Brown, J.R., Cassidy L., Dittus, A.J., Grose, M., Maher, N., Paik, S.,
    Perkins‑Kirkpatrick, S.E. and Sengupta, A. (2024) Exploring climate stabilisation at different global warming levels in
    ACCESS‑ESM‑1.5. Earth System Dynamics 15, 1353–1383, https://doi.org/10.5194/esd‑15‑1353‑2024
  3. Kay, J.E., Liang, Y‑C., Zhou, S‑N. and Maher, N.. (2024) Sea ice feedbacks cause more greenhouse cooling. Environmental
    Research: Climate 3 041003 doi:10.1088/2752‑5295/ad8026
  4. Capotondi, A., McGregor, S., McPhaden, M.J., Cravatte, S., Holbrook, N.J., Imada, Y., Sanchez, S.C., Sprintall, J., Stuecker,
    M.F., Ummenhofer, C.C., Zeller, M., Farneti, R., Graffino G., Hu S., Karnauskas K.B., Kosaka Y., Kucharski F., Mayer M.,
    Qiu B., Santoso A., Taschetto A.S., Wang F., Zhang X., Holmes R.M., Luo J‑J, Maher, N. Martinez‑Villalobos, C., Naha,
    R., Stevenson, S., Sullivan, A., van Rensch, P. (2023) Mechanisms of Tropical Pacific Decadal Variability. Nature Reviews
    Earth & Environment 4, 754–769 https://www.nature.com/articles/s43017-023-00486-xwww.nature.com/articles/s43017-023-00486-x
  5. Malagón-Santos, V., Slangen, A. B. A., Hermans, T. H. J., Dangendorf, S., Marcos, M., and Maher, N.. Improving Statistical Projections of Ocean Dynamic Sea-level Change Using Pattern Recognition Techniques, EGUsphere Ocean Science 19, 499-515 https://doi.org/10.5194/os-19-499-2023
  6. Maher, N., Wills, R.C.J., DiNezio, P., Klavans, J., Milinski, S., Sanchez, S.C., Stevenson, S., Stuecker, M.F. and Wu, X. The future of the El Niño-Southern Oscillation: Using large ensembles to illuminate time-varying responses and inter-model differences. Earth System Dynamics 14, 413-431 https://doi.org/10.5194/esd-14-413-2023
  7. Maher, N., Kay, J.E.. and Capotondi, A. Modulation of ENSO Teleconnections over North America by the Pacific Decadal Oscillation, Environmental Research Letters 17 114005 https://doi.org/10.1088/1748-9326/ac9327
  8. Maher, N., Tabarin, T.P. and Milinski, S. (2022). Combining machine learning and SMILEs to classify, better understand, and project changes in ENSO events, Earth System Dynamics, https://doi.org/10.5194/esd-2021-105
  9. ​Ward, B., F.S.R. Pausata, and Maher, N. (2021). The sensitivity of the ENSO to volcanic aerosol spatial distribution in the MPI large ensemble. Earth System Dynamics. Earth System Dynamics, 12, 975–996, https://doi.org/10.5194/esd-12-975-2021
  10. Suarez-Gutierrez, L, Maher, N, and Milinski, S. (2021). Exploiting large ensembles for a better yet simpler climate model evaluation. Climate Dynamics.  https://doi.org/10.1007/s00382-021-05821-w
  11. Maher, N., Power, S and Marotzke J. (2021). More accurate quantification of model-to-model agreement in externally forced climatic responses over the coming century. Nature Communications 12, 788 https://doi.org/10.1038/s41467-020-20635-w
  12. Milinski, S.,  Maher, N., and Olonscheck, D.  (2020). How large does a large ensemble need to be? Earth System Dynamics 11, 885-901 doi.org/10.5194/esd-11-885-2020
  13. Fiedler, S., Crueger, T., D'Agostino, R., Peters, P., Becker, T., Leutwyler, D., Paccini, L., Burdanowitz, J., Buehler, S.A., Cortes, A.U., Dauhut, T., Dommenget, D., Fraedrich, K., Jungandreas, L., Maher, N., Naumann, A.K., Rugenstein, M., Sakradzija, M., Schmidt, H., Sielmann, F., Stephan, C., Timmreck, C., Zhu, X. and Stevens, B. (2020). Simulated Tropical Precipitation Assessed Across Three Major Phases of the Coupled Model Intercomparison Project (CMIP). Monthly Weather Review, 148 (9): 3653–3680 https://doi.org/10.1175/MWR-D-19-0404.1
  14. Lehner, F., Deser, C., Maher, N., Marotzke, J., Fischer, E., Brunner, L., Knutti, R., and Hawkins, E.  (2020). Partitioning climate projection uncertainty with multiple Large Ensembles and CMIP5/6 Earth System Dynamics  https://doi.org/10.5194/esd-2019-93
  15. Maher, N., Lehner, F and Marotzke J. (2020). Quantifying the role of internal variability in the climate we will observe in the coming decades. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ab7d02
  16. Perry, S.J., McGregor, S., Sen Gupta, A., England, E. and Maher, N. (2020). Projected late 21st Century changes to the regional impacts of the El Nino-Southern Oscillation. Climate Dynamicslink.springer.com/article/10.1007/s00382-019-05006-6
  17. Maher, N., Milinski, S., Suarez-Gutierrez, L., Botzet, M. Dobrynin, M., Kornblueh, L., Kröger, J., Takano, Y.,  Ghosh, R., Hedemann, C., Li, C., Li, H., Manzini, E., Notz, D., Putrasahan, D., Boysen, L., Claussen, M., Ilyina, T., Olonscheck, D., Raddatz, T., Stevens, B. and Marotzke, J. (2019). The Max Planck Institute Grand Ensemble: Enabling the Exploration of Climate System Variability. JAMES https://doi.org/10.1029/2019MS001639
  18. Maher, N., Matei, D., Milinski, S., and Marotzke, J. (2018). ENSO change in climate projections: Forced response or internal variability? Geophys. Res. Lett., 45. doi.org/10.1029/2018GL079764 
  19. Maher, N. England, M. H., Sen Gupta, A. and Spence, P. (2018), Role of Pacific trade winds in driving ocean temperature during the recent slowdown and projections under a wind trend reversal, Clim Dyn. doi.org/10.1007/s00382-017-3923-3 
  20. Donat M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A. and Maher, N. (2016), More extreme rain in the driest and wettest regions of the globe. Nature Climate Changedoi:10.1038/nclimate2941
  21. Maher W., Maher, N., Taylor, A., Krikowa, F., and Mikac, K. M. (2016). The use of the marine gastropod, Cellana tramoserica as a biomonitor of metal contamination in near shore environments, Environ. Monit. Assess, doi: 10.1007/s10661-016-5380-6
  22. Maher, N., McGregor, S., England, M. H., and Sen Gupta, A. (2015), Effects of volcanism on tropical variability, Geophys. Res. Lett., 42 ,6024–6033
  23. Meehl, G. A., Teng, H., Maher, N. and England, M. H. (2015), Effects of Mt Pinatubo eruption on decadal climate prediction skill, Geophys. Res. Lett., 42, 10,840–10,846, doi:10.1002/ 2015GL066608.
  24. England, M. H., Kajtar, J. N., Maher ,N. (2015), Robust warming projections despite the recent hiatus, Nature Climate Change, 5, 394-396
  25. Griffin, J., Latief, H., Kongko, W., Harig, S., Horspool, N., Hanung, R., Rojali, A., Maher, N., Fuchs, A., Hossen, J., Upi, S., Dewanto, S. E., Rakowsky, N. and Cummins, P. (2015), An evaluation of onshore digital elevation models for modeling tsunami inundation zones. Frontiers in Earth Science, 3, 32
  26. Maher, N., Sen Gupta, A., and England, M. E. (2014), Drivers of decadal hiatus periods in the 20th and 21st centuries, Geophys. Res. Lett., 41, 5978–5986
  27. Griffiths, R.W, Maher, N and Hughes, G.O. (2011) ,Ocean stratification under oscillatory surface buoyancy forcing, J. Mar. Res., 69, 523-543 


Book Chapters (1)

  1. McGregor, S., Khodri, M., Maher, N., Ohba, M., Pausata, F. and Stevenson, S. (2020) The effect of strong volcanic eruptions on ENSO. McPhaden, M.J., Santoso, S. and Cai, W. (Eds.) El Nino Southern Oscillation in a Changing Climate American Geophysical Union

Special Issue Preface/Perspective (1)

  1. Maher, N, Milinski, S and Ludwig, R (2021). Large ensemble climate model simulations: introduction, overview, and future prospects for utilising multiple types of large ensemble, Earth System Dynamics, 12, 401–418, https://doi.org/10.5194/esd-12-401-2021

Conference Papers (1)

  1. Vietinghoff, D, Heine, C., Böttinger, M., Maher, N., Jungclaus, J.H., Scheuermann, G. (2021). Visual Analysis of Spatio-Temporal Trends in Time-Dependent Ensemble Data Sets on the Example of the North Atlantic Oscillation. PacificVis

White Papers (1)

  1. Maher, N., DiNezio, P., Capotondi, A. and Kay, J. (2021). Identifying precursors of daily to seasonal hydrological extremes over the USA using deep learning techniques and climate model ensembles. AI4ESP: Artificial Intelligence for Earth System Predictability. Department of Energy. https://www.ai4esp.org/files/AI4ESP1087_Maher_Nicola.pdf


Other Publications (2)

  1. Suarez-Gutierrez, L, Maher, N, and Milinski, S.  (2020). Evaluating the internal variability and forced response in Large Ensembles. US CLIVAR Variations, 18, 2.
  2. Maher, N. (2018). Natural drivers of interannual to decadal variations in surface climate. BAMOS, 31(2), 9-12