Dr Navid Constantinou

Contacts
I grew up in Cyprus. I am a physicist at heart and I'm fascinated with geophysical fluid dynamics. My Ph.D. research focussed on atmospheric dynamics and in particular the study of how the sub polar jet stream interacts with atmospheric turbulence. After my PhD, I was awarded a NOAA Climate & Global Change postdoctoral fellowship (2015-2017) to go at the Scripps Institution of Oceanography, University of California San Diego. There, I tried to shed insight on some of the physical processes that occur in the ocean by studying the interaction amongst oceanic eddies, large-scale ocean currents, and underwater mountains at the bottom of the ocean. Consequently, I joined ANU as part of the ARC Centre of Excellence for Climate Extremes in May 2018. I received a Discovery Early Career Researcher Award from the Australian Research Council to work on machine learning and ocean eddy parametrizations, a project that commenced on June 2021.
Besides research I enjoy surfing 🏄🏽, biking 🚲, horse riding 🐎, dancing 💃🏼. I like telling stories and I am an avid story listener. Whenever I get the chance I hop into the ocean in person.
Read more on my personal website or have a look at my github profile.
Research interests
physical oceanography, geophysical fluid dynamics, fluid mechanics, machine learning, atmospheric dynamics, climate
Read more at my personal website.
Groups
- Researcher, Climate and Fluid Physics
Submitted/In review
-
Bhagtani, D., Hogg, A. McC., Holmes, R. M., and Constantinou, N. C. (2023) Surface heating steers planetary-scale ocean circulation., J. Phys. Oceanogr., (submitted on January 2023; doi:10.48550/arXiv.2301.11474) doi pdf
-
Constantinou, N. C., Rocha, C. B., Llewellyn Smith, S. G., and Young, W. R. (2023) Nusselt number scaling in horizontal convection: boundary conditions and dimensionality. J. Fluid Mech. (submitted on January 2023; arXiv:2301.03122). doi pdf
- Wagner, G. L., Constantinou, N. C., and Reich, B. G. (2022) Ocean general circulation models simulate total ocean transport averaged over surface waves. Geophys. Res. Lett., (submitted on Oct. 2022; arXiv:2210.08552). doi pdf
Published/In press
-
Hogg, A. McC., Penduff, T., Close, S. E., Dewar, W. K., Constantinou, N. C., and Martínez-Moreno, J. (2022) Circumpolar variations in the chaotic nature of Southern Ocean eddy dynamics. J. Geophys. Res.-Oceans, 127, e2022JC018440. doi pdf
-
Wagner, T. J. W., Eisenman, I., Ceroli, A. M., and Constantinou, N. C. (2022) How winds and ocean currents influence the drift of floating objects. J. Phys. Oceanogr., 52(5), 907-916. doi pdf
-
Constantinou, N. C. and Hogg, A. McC. (2021) Intrinsic oceanic decadal variability of upper-ocean heat content. J. Climate, 34 (15), 6175-6189. datasets and notebooks doi pdf
(Featured in the CLEx press news.) -
Martínez-Moreno, J., Hogg, A. McC., England, M. H., Constantinou, N. C., Kiss, A. E., and Morrison, A. K. (2021). Global changes in oceanic mesoscale currents over the satellite altimetry record. Nat. Clim. Chang., 11, 397-403. doi pdf
(Featured in the CLEX press news; also read about it in The Conversation. Selection of press coverage: The Guardian, The Sydney Morning Herald, Cosmos Magazine.) -
Constantinou, N. C., Wagner, G. L., Siegelman, L, Pearson, B. C., and Palóczy, A. (2021). GeophysicalFlows.jl: Solvers for geophysical fluid dynamics problems in periodic domains on CPUs & GPUs. J. Open Source Softw. 6 (60), 03053. code repository package documentation doi pdf
(Featured in the CLEX press news; read also the related blog post.) -
Lozano-Durán, A., Constantinou, N. C., Nikolaidis, M.-A., and Karp, M. (2021). Cause-and-effect of linear mechanisms sustaining wall turbulence. J. Fluid Mech., 914, A8. doi pdf
-
Lozano-Durán, A., Nikolaidis, M.-A., Constantinou, N. C., and Karp, M. (2020). Alternative physics to understand wall turbulence: Navier–Stokes equations with modified linear dynamics. J. Phys.: Conf. Ser., 1522, 012003. doi pdf
-
Rocha, C. B., Constantinou, N. C., Llewellyn Smith, S. G., and Young, W. R. (2020). The Nusselt numbers of horizontal convection. J. Fluid Mech. 894, A24. doi pdf
-
Constantinou, N. C. and Hogg, A. McC. (2019). Eddy saturation of the Southern Ocean: a baroclinic versus barotropic perspective. Geophys. Res. Lett., 46, 12202-12212. [datasets and notebooks; model animation] doi pdf
(best Early Career Researcher paper within CLEx for year 2019) -
Martínez-Moreno, J., Hogg, A. McC., Kiss, A. E., Constantinou, N. C., and Morrison, A. K. (2019). Kinetic energy of eddy-like features from sea surface altimetry. J. Adv. Model. Earth Sy., 11 (10), 3090-3105. doi pdf
(Featured in the CLEx press news.) -
Parker, J. B. and Constantinou, N. C. (2019). Magnetic eddy viscosity of mean shear flows in two-dimensional magnetohydrodynamics. Phys. Rev. Fluids, 4, 083701. doi pdf
(Featured in the ANU and LLNL press news.) -
Bakas, N. A., Constantinou, N. C., and P. J. Ioannou (2019). Statistical state dynamics of weak jets in barotropic beta-plane turbulence. J. Atmos. Sci., 76 (3), 919-945. doi pdf
(Featured in the CLEx press news.) -
Constantinou, N. C. and Parker, J. B. (2018). Magnetic suppression of zonal flows on a beta plane. Astrophys. J., 863, 46. doi pdf
(Featured in the ANU, LLNL, and CLEx press news; also read about it in The Conversation.) -
Constantinou, N. C. (2018). A barotropic model of eddy saturation. J. Phys. Oceanogr., 48 (2), 397-411 doi pdf
-
Constantinou, N. C. and Young, W. R. (2017). Beta-plane turbulence above monoscale topography. J. Fluid. Mech., 827, 415-447. doi pdf
-
Farrell, B. F., Ioannou, P. J., Jiménez, J., Constantinou, N.C., Lozano-Durán, A., and Nikolaidis, M.-A. (2016). A statistical state dynamics-based study of the structure and mechanism of large-scale motions in plane Poiseuille flow. J. Fluid. Mech., 809, 290-315. doi pdf
-
Constantinou, N. C., Farrell, B. F., and Ioannou, P. J. (2016). Statistical state dynamics of jet—wave coexistence in barotropic beta-plane turbulence. J. Atmos. Sci., 73 (5), 2229-2253. doi pdf
-
Bakas, N. A., Constantinou, N. C., and Ioannou, P. J. (2015). S3T stability of the homogeneous state of barotropic beta-plane turbulence. J. Atmos. Sci., 72 (5), 1689-1712. doi pdf
-
Constantinou, N. C., Lozano-Durán, A., Nikolaidis, M.-A., Farrell, B. F., Ioannou, P. J., and Jiménez J. (2014). Turbulence in the highly restricted dynamics of a closure at second order: comparison with DNS. J. Phys.: Conf. Ser., 506, 012004. doi pdf
-
Constantinou, N. C., Farrell, B. F., and Ioannou, P. J. (2014). Emergence and equilibration of jets in beta-plane turbulence: applications of Stochastic Structural Stability Theory, J. Atmos. Sci., 71 (5), 1818-1842. doi pdf
-
Constantinou, N. C. and Ioannou, P. J. (2011). Optimal excitation of two dimensional Holmboe instabilities. Phys. Fluids, 23, 074102. doi pdf
Grey Literature
-
Miller, J. W., O’Neil, C., Constantinou, N. C., and Anzecot, O. (2022). Eigenvalue initialisation and regularisation for Koopman autoencoders. arXiv doi pdf
-
Lozano-Durán, A., Nikolaidis, M.-A., Constantinou, N. C., and Karp, M. (2019) Wall turbulence without modal instability of the streaks. arXiv pdf
Teaching
-
Computational Geosciences (EMSC4033/EMSC8033), Semester 1, 2021 onwards
Lecturer and co-convener (w/ Louis Moresi)
Class Github Repository and Online Book -
Instabilities in fluids (EMSC3050/EMSC4050/EMSC8014), Semester 2, 2018
Lecturer and convener
Class Website
Students
Ph.D. students
-
Ellie Ong
February 2021 - ; University of New South Wales
Investigation into local drivers of change at the Antarctic continental margin -
Dhruv Bhagtani
October 2020 - ; Australian National University
The interplay between wind stress and surface buoyancy in driving large-scale oceanic gyres
Masters/Honors
-
Elise Palethorpe
February 2022 - November 2022; Australian National University (Honours)
Implementing a multigrid pressure solver in CliMA’s ocean general circulation model
First Class Honours
Undergraduate students
-
Phoebe Grosser
December 2022 - March 2023; Australian National University (2nd year)
Ocean’s tidal response with high-fidelity bathymetry and investigation on physical mechanisms -
Jack Miller
July 2022 - December 2022; Australian National University (2nd year)
Modeling with Koopman Autoencoders for Data Synthesis with application to cyclones -
Oliver Balfour
February 2022 - June 2022; Australian National University (2nd year undergraduate)
Predicting cyclone genesis, trajectory, and intensity with machine learning -
Jack Miller
February 2022 - June 2022; Australian National University (2nd year undergraduate)
Predicting cyclone genesis, trajectory, and intensity with machine learning -
Elise Palethorpe
July 2020 - November 2020; Australian National University (2nd year undergraduate)
Numerical methods for partial differential equations: high-order accurate weighted essentially non-oscillatory (WENO) schemes -
Fabian Antonio Circelli
November 2019 - February 2020; Australian National University (3rd year undergraduate)
Fourier-based pseudospectral methods for solving partial differential equations