Dr Navid Constantinou

ARC DECRA Research Fellow

I grew up in Cyprus. I am a physicist at heart and I'm fascinated with geophysical fluid dynamics. I got my Ph.D. from the National and Kapodistrian University in Greece working on planetary atmosphere dynamics. Then, I was awarded a NOAA Climate & Global Change postdoctoral fellowship (2015-2017) to go at the Scripps Institution of Oceanography, University of California San Diego. I joined ANU as part of the ARC Centre of Excellence for Climate Extremes in May 2018. I received a Discovery Early Career Researcher Award from the Australian Research Council to work on machine learning and ocean eddy parametrizations, a project that commenced on June 2021.

I am passionate and heavily involved in open-source software and climate model development. As part of the Climate Modelling Alliance we are developing a climate model that runs on Graphical Processing Units (GPUs) and achieves unprecedented speedups compared to state-of-the-art climate models.

Besides research and coding I enjoy surfing 🏄🏽, biking 🚲, horse riding 🐎, dancing 💃🏼. I like telling stories and I am an avid story listener. Whenever I get the chance I jump into the ocean in person.

Watch me introducing myself in a sixty-second video.

Read more on my personal website or have a look at my github profile.

Research interests

physical oceanography, geophysical fluid dynamics, fluid mechanics, machine learning, atmospheric dynamics, climate

Read more at my personal website.


Submitted/In review

  1. Bhagtani, D., Hogg, A. McC., Holmes, R. M., and Constantinou, N. C. (2024) Unravelling how winds and surface heat fluxes control the Atlantic meridional heat transport. Geophys. Res. Lett. (submitted on Jan 2024; doi:10.48550/arXiv.2401.14230doi pdf

  2. Klöwer, M., Gelbrecht, M., Hotta, D., Silvestri, S., Wagner, G. L., White, A., Hatfield, S., Meyer, D., Kimpson, T., Constantinou, N. C., and Hill, C. (2023). SpeedyWeather.jl: Reinventing atmospheric general circulation models towards interactivity and extensibility. J. Open Source Softw.  open review repository documentation pdf

  3. Silvestri, S., Wagner, G. L., Campin, J.-M., Constantinou, N. C., Hill, C., Souza, A., and Ferrari, R. (2023). A new WENO-based momentum advection scheme for simulations of ocean mesoscale turbulence. J. Adv. Model. Earth Sy. (submitted on Nov 2023; doi:10.22541/essoar.170110657.76489860/v1doi pdf

  4. Barnes, A., Shakespeare, C., Hogg, A. McC., and Constantinou, N. C. (2023). Topographically-generated near-internal waves as a response to winds over the ocean surface. J. Phys. Oceanogr. (submitted on Nov 2023; doi:10.48550/arXiv.2311.02275doi pdf

  5. Wagner, G. L., Hillier, A., Constantinou, N. C., Silvestri, S., Souza, A., Burns, K., Ramadhan, A., Hill, C., Campin, J.-M., Marshall, J., and Ferrari, R. (2023) CATKE: a turbulent-kinetic-energy-based parameterization for ocean microturbulence with dynamic convective adjustment. J. Adv. Model. Earth Sy. (submitted on June 2023; doi:10.48550/arXiv.2306.13204doi pdf

  6. Bennetts, L. G., Shakespeare, C. J., Vreugdenhil, C. A., Foppert, A., Gayen, B., Meyer, A., Morrison, A. K., Padman, L., Phillips, H. E., Stevens, C. L., Toffoli, A., Constantinou, N. C., Cusack, J., Cyriak, A., Doddridge, E. W., Domingues, C. M., England, M. H., Evans, D. G., Heil, P., Hogg, A. McC., Holmes, R. M., Huneke, W. G. C., Jones, N. L., Keating, S. R., Kiss, A. E., Kraitzman, N., Malyarenko, A., McConnochie, C. D., Meucci, A., Montiel, F., Neme, J., Nikurashin, M., Patel, R. S., Peng, J.-P., Rayson, M., Rosevear, M. G., Sohail, T., Spence, P., Stanley, G. J. (2023) Closing the loops on Southern Ocean dynamics: From the circumpolar current to ice shelves and from bottom mixing to surface waves. Rev. Geophys. (submitted on May 2023; doi:10.22541/essoar.168882017.73914213/v1)  doi pdf

  7. Ong, E. Q. Y., Doddridge, E. W., Constantinou, N. C., England, M. H., and Hogg, A. McC. (2023) Episodic Antarctic shelf intrusions of circumpolar deep water via canyons. J. Phys. Oceanogr., (submitted on April 2023, revised on October 2023 and on February 2024; doi:10.48550/arXiv.2304.13225doi pdf

  8. Constantinou, N. C., Rocha, C. B., Llewellyn Smith, S. G., and Young, W. R. (2023) Nusselt number scaling in horizontal convection. J. Fluid Mech. (submitted on January 2023, revised on June 2023; arXiv:2301.03122). doi pdf

  9. Wagner, G. L., Constantinou, N. C., and Reich, B. G. (2023) Stokes drift should not be added to ocean general circulation model velocities. Geophys. Res. Lett., (submitted on Oct. 2022, revised on Apr 2023; arXiv:2210.08552). doi pdf


Published/In press

  1. Strong-Wright, J., Chen, S., Constantinou, N. C., Silvestri, S., Wagner, G. L., and Taylor, J. R. (2023). OceanBioME.jl: A flexible environment for modelling the coupled interactions between ocean biogeochemistry and physics. J. Open Source Softw. 8(90), 5669. code repository package documentation doi pdf 

  2. Bhagtani, D., Hogg, A. McC., Holmes, R. M., and Constantinou, N. C. (2023) Surface heating steers planetary-scale ocean circulation. J. Phys. Oceanogr.53(10), 2375–2391. doi pdf

  3. Hogg, A. McC., Penduff, T., Close, S. E., Dewar, W. K., Constantinou, N. C., and Martínez-Moreno, J. (2022) Circumpolar variations in the chaotic nature of Southern Ocean eddy dynamics. J. Geophys. Res.-Oceans127, e2022JC018440. doi pdf

  4. Wagner, T. J. W., Eisenman, I., Ceroli, A. M., and Constantinou, N. C. (2022) How winds and ocean currents influence the drift of floating objects. J. Phys. Oceanogr., 52(5), 907-916. doi pdf 

  5. Constantinou, N. C. and Hogg, A. McC. (2021) Intrinsic oceanic decadal variability of upper-ocean heat content. J. Climate, 34 (15), 6175-6189. datasets and notebooks doi pdf
    (Featured in the CLEx press news.)

  6. Martínez-Moreno, J., Hogg, A. McC., England, M. H., Constantinou, N. C., Kiss, A. E., and Morrison, A. K. (2021). Global changes in oceanic mesoscale currents over the satellite altimetry record. Nat. Clim. Chang.11, 397-403. doi pdf
    (Featured in the CLEX press news; also read about it in The Conversation. Selection of press coverage: The GuardianThe Sydney Morning HeraldCosmos Magazine.)

  7. Constantinou, N. C., Wagner, G. L., Siegelman, L, Pearson, B. C., and Palóczy, A. (2021). GeophysicalFlows.jl: Solvers for geophysical fluid dynamics problems in periodic domains on CPUs & GPUs. J. Open Source Softw. 6 (60), 03053. code repository package documentation doi pdf 
    (Featured in the CLEX press news; read also the related blog post.)

  8. Lozano-Durán, A., Constantinou, N. C., Nikolaidis, M.-A., and Karp, M. (2021). Cause-and-effect of linear mechanisms sustaining wall turbulence. J. Fluid Mech.914, A8. doi pdf

  9. Lozano-Durán, A., Nikolaidis, M.-A., Constantinou, N. C., and Karp, M. (2020). Alternative physics to understand wall turbulence: Navier–Stokes equations with modified linear dynamics. J. Phys.: Conf. Ser.1522, 012003. doi pdf

  10. Rocha, C. B., Constantinou, N. C., Llewellyn Smith, S. G., and Young, W. R. (2020). The Nusselt numbers of horizontal convection. J. Fluid Mech. 894, A24. doi pdf

  11. Constantinou, N. C. and Hogg, A. McC. (2019). Eddy saturation of the Southern Ocean: a baroclinic versus barotropic perspective. Geophys. Res. Lett., 4612202-12212. [datasets and notebooks; model animationdoi pdf  
    (best Early Career Researcher paper within CLEx for year 2019)

  12. Martínez-Moreno, J., Hogg, A. McC., Kiss, A. E., Constantinou, N. C., and Morrison, A. K. (2019). Kinetic energy of eddy-like features from sea surface altimetry. J. Adv. Model. Earth Sy., 11 (10), 3090-3105. doi pdf
    (Featured in the CLEx press news.)

  13. Parker, J. B. and Constantinou, N. C. (2019). Magnetic eddy viscosity of mean shear flows in two-dimensional magnetohydrodynamics. Phys. Rev. Fluids, 4, 083701. doi pdf 
    (Featured in the ANU and LLNL press news.)

  14. Bakas, N. A., Constantinou, N. C., and P. J. Ioannou (2019). Statistical state dynamics of weak jets in barotropic beta-plane turbulence. J. Atmos. Sci.,  76 (3), 919-945. doi pdf
    (Featured in the CLEx press news.)

  15. Constantinou, N. C. and Parker, J. B. (2018). Magnetic suppression of zonal flows on a beta plane. Astrophys. J.863, 46. doi pdf 
    (Featured in the ANULLNL, and CLEx press news; also read about it in The Conversation.)

  16. Constantinou, N. C. (2018). A barotropic model of eddy saturation. J. Phys. Oceanogr.,  48 (2), 397-411 doi pdf

  17. Constantinou, N. C. and Young, W. R. (2017). Beta-plane turbulence above monoscale topography. J. Fluid. Mech.827, 415-447. doi pdf

  18. Farrell, B. F., Ioannou, P. J., Jiménez, J., Constantinou, N.C., Lozano-Durán, A., and Nikolaidis, M.-A. (2016). A statistical state dynamics-based study of the structure and mechanism of large-scale motions in plane Poiseuille flow. J. Fluid. Mech.809, 290-315. doi pdf

  19. Constantinou, N. C., Farrell, B. F., and Ioannou, P. J. (2016). Statistical state dynamics of jet—wave coexistence in barotropic beta-plane turbulence. J. Atmos. Sci.73 (5), 2229-2253. doi pdf

  20. Bakas, N. A., Constantinou, N. C., and Ioannou, P. J. (2015). S3T stability of the homogeneous state of barotropic beta-plane turbulence. J. Atmos. Sci.72 (5), 1689-1712. doi pdf

  21. Constantinou, N. C., Lozano-Durán, A., Nikolaidis, M.-A., Farrell, B. F., Ioannou, P. J., and Jiménez J. (2014). Turbulence in the highly restricted dynamics of a closure at second order: comparison with DNS. J. Phys.: Conf. Ser.506, 012004. doi pdf

  22. Constantinou, N. C., Farrell, B. F., and Ioannou, P. J. (2014). Emergence and equilibration of jets in beta-plane turbulence: applications of Stochastic Structural Stability Theory, J. Atmos. Sci.71 (5), 1818-1842. doi pdf

  23. Constantinou, N. C. and Ioannou, P. J. (2011). Optimal excitation of two dimensional Holmboe instabilities. Phys. Fluids23, 074102. doi pdf


Grey Literature

  1. Silvestri, S., Wagner, G. L., Hill, C., Ardakani, M. R., Blaschke, J., Campin, J.-M., Churavy, V., Constantinou, N. C., Edelman, A., Marshall, J., Ramadhan, A., Souza, A., Ferrari, R. (2023). Oceananigans.jl: A model that achieves breakthrough resolution, memory and energy efficiency in global ocean simulations. arXiv  doi pdf

  2. Miller, J. W., O’Neil, C., Constantinou, N. C., and Anzecot, O. (2022). Eigenvalue initialisation and regularisation for Koopman autoencoders. arXiv  doi pdf

  3. Lozano-Durán, A., Nikolaidis, M.-A., Constantinou, N. C., and Karp, M. (2019) Wall turbulence without modal instability of the streaks. arXiv pdf 




Ph.D. students

  • Ellie Ong
    February 2021 - ; University of New South Wales 
    Investigation into local drivers of change at the Antarctic continental margin

  • Dhruv Bhagtani 
    October 2020 - ; Australian National University 
    The interplay between wind stress and surface buoyancy in driving large-scale oceanic gyres


  • Elise Palethorpe 
    February 2022 - November 2022; Australian National University (Honours) 
    Implementing a multigrid pressure solver in CliMA’s ocean general circulation model
    First Class Honours

Undergraduate students

  • Phoebe Grosser 
    December 2022 - March 2023; Australian National University (2nd year) 
    Ocean’s tidal response with high-fidelity bathymetry and investigation on physical mechanisms

  • Jack Miller 
    July 2022 - December 2022; Australian National University (2nd year) 
    Modeling with Koopman Autoencoders for Data Synthesis with application to cyclones

  • Oliver Balfour 
    February 2022 - June 2022; Australian National University (2nd year undergraduate)
    Predicting cyclone genesis, trajectory, and intensity with machine learning

  • Jack Miller 
    February 2022 - June 2022; Australian National University (2nd year undergraduate)
    Predicting cyclone genesis, trajectory, and intensity with machine learning

  • Elise Palethorpe 
    July 2020 - November 2020; Australian National University (2nd year undergraduate)
    Numerical methods for partial differential equations: high-order accurate weighted essentially non-oscillatory (WENO) schemes

  • Fabian Antonio Circelli
    November 2019 - February 2020; Australian National University (3rd year undergraduate)
    Fourier-based pseudospectral methods for solving partial differential equations

Supervised students