Professor Jimin Yu

Professor of Marine Carbon Cycle (visiting)

Content navigation

About

ORCiD: 0000-0002-3896-1777

Employment History

2012-           Tenured positions (Fellow, ARC Future Fellow, Assoc. Professor, Professor), Research School of Earth Sciences, ANU

2011-2012, Lawrence Livermore National Laboratory Fellow, Lawrence Livermore National Laboratory, USA

2011-2011, Lamont Assistant Research Professor, Lamont-Doherty Earth Observatory, Columbia University, USA

2008-2011, Lamont Post-doctoral Fellow, Lamont-Doherty Earth Observatory, Columbia University, USA

2006-2008, Gary Comer Research Fellow, Department of Earth Sciences, University of Cambridge, Cambridge, UK

Academic Education and Qualifications

2002-2006, Ph.D., Department of Earth Sciences, University of Cambridge, palaeoceanography, palaeoclimate & geochemistry

1999-2002, M.Sc., Department of Earth Sciences, Nanjing University, mineralogy, petrology & economic geology

1995-1999, B.Sc., Department of Earth Sciences, Nanjing University, geology

Affiliations

science Research area
  Groups

Research interests

Research supports. The group has funding to support one highly motivated PhD student, based on competition of applicants (academic background, research ideas, etc). Contact me if you are interested. We also welcome candidates who can raise fund (e.g., China Scholarship Council, CSC; IODP funding) to support their study at ANU.

Research projects for Honour/Masters/PhD students. These projects aim to investigate the global Carbon cycle on various timescales.

Project #1. Application of boron isotopes of biogenic carbonates (corals and foraminiferal tests) to investigate past carbon cycle

Through intensive method development, we have (finally!) established a reliable method to measure boron isotopes of small biogenic carbonate samples (e.g., corals and forams) by using one of our two Neptune MC-ICP-MS and a new prepFAST MC system. This project aims to make the best use of the method to measure various samples from critical locations. The obtained boron isotope data will be considered along with other geochemical data (e.g., radiocarbon and nutrients) to gain insights into factors controlling past atmospheric CO2 changes on both rapid and long-time scales.

Project #2. Holocene climate-carbon cycle using super high-resolution reconstructions

Compared to the last deglacial period, the Holocene (~0 - 10,000 years ago) climate has remained relatively stable. However, there have been significant changes in ocean circulation and carbon cycle as registered by high-sedimentation archives. For example, ice core records show ~20 ppm increase in atmospheric pCO2 during the last ~8,000 years, but the mechanisms responsible for this change and their links to climate/ocean circulation remain elusive. To investigate Holocene climatic changes, high-sedimentation-rate cores are necessary. We have secured sediment cores with sediment rates up to 50 cm/kyr from key locations in the Atlantic Ocean with which we hope to provide new insights into processes controlling the Holocene climate and carbon cycle. The project aims to use various paleoceanographic tools to reconstruct mid- and deep-depth physical (temperature, salinity) and chemical (nutrient and carbonate ion concentrations) properties at various locations. Along with the use of intermediate complexity models (e.g., LOVECLIM, UVIC, etc), these new data will afford to identify the role of the Atlantic Ocean in controlling the regional and global climate during the Holocene.

Project #3. Meltwater fingerprints in the North Atlantic during the last deglacial period

Ocean circulation is thought to have played an important role in the global climate by redistributing heat and affecting the global carbon cycle and hence atmospheric CO2 on Earth. Model studies suggest that melt water fluxes in the North Atlantic can impose significant impacts on the strength of Atlantic Meridional Overturning Circulation (AMOC). However, detailed meltwater history remains elusive. Meltwaters from glacials are characterized by negative oxygen isotope ratios, which offers a fingerprinting method to detect past meltwater inputs. This project aims to use paired planktonic foraminiferal Mg/Ca (a temperature proxy) and d18O (affected by temperature and seawater d18O) to calculate past seawater d18O. A high-sedimentation core (~30 cm/kyr) is available to reconstruct detailed seawater d18O changes during the last deglacial period with particular emphasis on Heinrich Stadial 1 and Younger Drayas. The results will be interpreted in combination with an intermediate complexity model (e.g., LOVECLIM) to infer the influences of meltwater fluxes on past AMOC and global climate changes.

Project #4. Millennial timescale coupling of climate-Atlantic Ocean circulation

The project aims to reconstruct deep water temperature and salinity changes at millennial to centennial timescales for high sedimentation cores from the Atlantic Ocean. Benthic foraminiferal and ostracod shell Mg/Ca, Li/Mg, and other proxiess will be used for reconstructions. The data will allow us to obtain conservative parameters that are critical to understand past ocean circulation changes and, furthermore, their links to climate variabilities and carbon cycling.

Project #5. Southern Ocean nutrient and atmospheric pCO2

It is well known that Southern Ocean processes play a critical role in affecting past atmospheric pCO2 changes. Surface nutrient levels are important to understand the biological pump efficiency in the past. However, despite extensive effort, it remains highly debated regarding the history of the Southern Ocean nutrient changes. One reason is that scientists are short of cores with enough carbonate materials to work on. This project aims to apply geochemical proxies (including Cd/Ca and d15N) to two special cores collected from Polar Antarctic Zone (~70oS) near the deep water formation regions. It is fortuitous that these cores have enough foraminiferal shells for analyses. The materials provide an opportunity to gain new insights into mechanisms responsible for past atmospheric pCO2 changes.

Research Overview

  • Carbon cycle and oceanic carbonate system: using trace elements and isotopic compositions of marine carbonates together with models to understand interactions between atmosphere, surface and deep oceans, and land biosphere and their roles in the global carbon cycle on various timescales;
  • Trace elements and isotopes in inorganic and biogenic carbonates: developing new proxies using marine carbonates to reconstruct oceanic environments such as seawater pH and carbonate ion contents; understanding mechanisms that control the incorporation and variation of trace elements and of isotopes in inorganic and biogenic carbonates;
  • Ocean circulation changes: using multi-proxies to reconstruct past ocean circulation changes and their impacts on climate on different timescales.

Research Funding

ARC Discovery Project (DP140101393), 2014-2017. Chief Investigator: Yu.
ARC Future Fellowship (FT140100993), 2015-2019. Sole Investigator: Yu.

Teaching information

Teaching

EMSC3027/6027, Palaeoclimatology and Climate Change, course convener.

Publications

Journal Articles (Google Scholar, Scopus)

 

74Jimin Yu, DW Oppo, Z Jin, M Lacerra, X Ji, NE Umling, DC Lund, N McCave, L Menviel, J Shao, C Xu, (2022) Millennial and centennial CO2 release from the Southern Ocean during the last deglaciation, Nature Geoscience, in press
73Xiaolin Ma, Wentao Ma, Jun Tian, Jimin Yu, Enqing Huang, (2022) Ice sheet and terrestrial input impacts on the 100-kyr ocean carbon cycle during the Middle Miocene, Global and Planetary Change, https://doi.org/10.1016/j.gloplacha.2021.103723.
72Q Zhang, Q Liu, AP Roberts, J Yu, Y Liu, and J Li, (2021) Magnetotactic bacterial activity in the North Pacific Ocean and its relationship to Asian dust inputs and primary productivity since 8.0 Ma, Geophysical Research Letters, https://doi.org/10.1029/2021GL094687.
71EJ Rohling, J Yu, D Heslop, GL Foster, B Opdyke, AP Roberts, (2021) Sea level and deep-sea temperature reconstructions suggest quasi-stable states and critical transitions over the past 40 million years, Science Advances, 7 (26), eabf5326.
70Yuhao Dai, Jimin Yu*, Patrick Rafter, (2021) Deglacial Ventilation Changes in the Deep Southwest Pacific, Paleoceanography and Paleoclimatology, doi: 10.1029/2020PA004172.
69Lowell Stott, Jun Shao, Jimin Yu, Katharine Harazin, (2021) Evaluating the glacial-deglacial carbon respiration and ventilation change hypothesis as a mechanism for changing atmospheric CO2, Geophysical Research Letters, doi: 10.1029/2020GL091296.
68Zhangdong Jin, Jimin Yu, Fei Zhang, Xiaoke Qiang, (2020) Glacial-interglacial variation in catchment weathering and erosion paces the Indian summer monsoon during the Pleistocene, Quaternary Science Reviews, https://doi.org/10.1016/j.quascirev.2020.106619.
67Hong Ao, Eelco J Rohling, Chris Stringer, Andrew P Roberts, Mark J Dekkers, Guillaume Dupont-Nivet, Jimin Yu, Qingsong Liu, Peng Zhang, Zhonghui Liu, Xiaolin Ma, Weijian Zhou, Zhangdong Jin, Guoqiao Xiao, Hong Wang, Qiang Sun, Pingguo Yang, Xianzhe Peng, Zhengguo Shi, Xiaoke Qiang, Zhisheng An, (2020) Two-stage mid-Brunhes climate transition and mid-Pleistocene human diversification, Earth-Science Reviews, https://doi.org/10.1016/j.earscirev.2020.103354.
66J. Yu, L. Menviel, Z.D. Jin, R.F. Anderson, Z. Jian, A.M. Piotrowski, X. Ma, E.J. Rohling, F. Zhang, G. Marino, J.F. McManus, (2020) Last glacial atmospheric CO2 decline due to widespread Pacific deep water expansion, Nature Geoscience, https://doi.org/10.1038/s41561-020-0610-5. Related News and Views: “Pacific push into the Atlantic” in Nature Geoscience.
65Menviel, L., P. Spence, L.C. Skinner, K. Tachikawa, T. Friedrich, L. Missiaen, J. Yu, (2020) Enhanced Mid‐depth Southward Transport in the Northeast Atlantic at the Last Glacial Maximum Despite a Weaker AMOC, Paleoceanography and Paleoclimatology, DOI: 10.1029/2019PA003793.
64Rohling, E.J., Hibbert, F.D., Grant, K.M., Galaasen, E.V., Irvali, N., Kleiven, K., Marino, G., Ninnemann, U., Roberts, A.P., Rosenthal, Y., Schulz, H., Williams, F.H., and Yu, J., (2019) Asynchronous Antarctic and Greenland ice-volume contributions to the last interglacial sea-level highstand, Nature Communications, https://doi.org/10.1038/s41467-019-12874-3.
63Y. Dai, J. Yu, P. deMenocal, O. Hyams-Kaphzan, (2019) Influences of temperature and secondary environmental parameters on planktonic foraminiferal Mg/Ca: A new core-top calibration, Geochemistry, Geophysics, Geosystems, DOI: 10.1029/2019GC008526.
62M. Lacerra, D.C. Lund, G. Gebbie, D.W. Oppo, J. Yu, A. Schmittner, N.E. Umbling, (2019) Less Remineralized Carbon in the Intermediate-Depth South Atlantic During Heinrich Stadial 1, Paleoceanography and Paleoclimatology, DOI: 10.1029/2018PA003537.
61F. Zhang, Z. Jin, A.J. West, Z. An, R.G. Hilton, J. Wang, G. Li, A.L. Densmore, J. Yu, X. Qiang, Y. Sun, L. Li, L. Gou, Y. Xu, X. Xu, X. Liu, Y. Pan & C.-F. You, (2019) Monsoonal control on a delayed response of sedimentation to the 2008 Wenchuan earthquake, Science Advances, DOI: 10.1126/sciadv.aav7110.
60J. Yu, L. Menviel, Z.D. Jin, D.J.R. Thornalley, G.L. Foster, E.J. Rohling, I.N. McCave, J.F. McManus, Y. Dai, H. Ren, F. He, F. Zhang, P.J. Chen, A.P. Roberts, (2019) More efficient North Atlantic carbon pump during the Last Glacial Maximum, Nature Communications, https://doi.org/10.1038/s41467-019-10028-z
59N.E. Umling, D.W. Oppo, P. Chen, J., Yu, Z. Liu, M. Yan, G. Gebbie, D. C. Lund, K. R. Pietro, Z.D. Jin, K.-F. Huang, K.B. Costa, F.A.L. Toledo, (2019) Atlantic circulation and ice sheet influences on upper South Atlantic temperatures during the last deglaciation, Paleoceanography and Paleoclimatology, DOI: 10.1029/2019PA003558.
58R.F. Anderson, J.P. Sachs, MQ. Fleisher, K.A. Allen, J. Yu, A. Koutavas, S.L. Jaccard, (2019) Deep-sea oxygen depletion and ocean carbon sequestration during the last ice age, Global Biogeochemical Cycles, DOI: 10.1029/2018GB006049.
57L. Menviel, P. Spence, J. Yu, M. Chamberlain, R. Matear, K. Meissner, and M. England, (2018) Southern Hemisphere westerlies as a driver of the early deglacial atmospheric CO2 rise, Nature Communications, DOI: 10.1038/s41467-018-04876
56X. Ma*, J. Tian, W. Ma, K. Li, J. Yu, (2018) Changes of deep Pacific overturning circulation and carbonate chemistry during middle Miocene East Antarctic ice sheet expansion, Earth Planet. Sci. Lett., 484: 253-263. *: visiting PhD student publication
55E.J. Rohling, F.D. Hibbert, F.H. Williams, K.M. Grant, G. Marino, G.L. Foster, R. Hennekam, A.P. Roberts, J. Yu, J.M. Webster, Y. Yokoyama, (2017) Differences between Quaternary ice ages, Quat. Sci. Rev.,176, 1-28.
54A.P. Hasenfratz, R. Schiebel, D.J.R. Thornalley, J. Schönfeld, S.L. Jaccard, A. Martínez-García, A. Holbourn, A.E. Jennings, W. Kuhnt, C.H. Lear, T.M. Marchitto, U. Quillmann, Y. Rosenthal, J. Yu, G.H. Haug, (2017) Mg/Ca-temperature calibration for the benthic foraminifera Melonis barleeanum and Melonis pompilioides, Geochim. Cosmochim. Acta, 217, 365-383. http://dx.doi.org/10.1016/j.gca.2017.08.038.
53M. Lacerra, D. Lund, J. Yu, A. Schmittner, (2017) Carbon storage in the mid-depth Atlantic during millennial-scale climate events, Paleoceanography, doi: 10.1002/2016PA003081.
52J. Kerr, R. Rickaby, J. Yu, H. Elderfield, A.Y. Sadekov, (2017) The effect of ocean alkalinity and carbon transfer on deep-sea carbonate ion concentration during the past five glacial cycles, Earth Planet. Sci. Lett., 471, 42-53.
51P. Chen*, J. Yu, Z.D. Jin, (2017) An evaluation of benthic foraminiferal U/Ca and U/Mn proxies for deep ocean carbonate chemistry and redox conditions, Geochem. Geophys. Geosyst., 8, doi: 10.1002/2016GC006730. * visiting PhD student
50L. Menviel, J. Yu, F. Joos, A. Mouchet, K.J. Meissner, M.H. England, (2017) Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: a data-model comparison study, Paleoceanography, doi: 10.1002/2016PA003024.
49K. Allen, B. Hönisch, S. M. Eggins, L. L. Haynes, Y. Rosenthal, J. Yu, (2016) Trace element proxies for surface ocean conditions: A synthesis of culture calibrations with planktic foraminifera, Geochim. Cosmochim. Acta (193): 197-221.
48Y. Dai*, J. Yu, H. Johnstone, (2016) Distinct responses of planktonic foraminiferal B/Ca to dissolution on seafloor, Geochem. Geophys. Geosyst., 17, doi: 10.1002/2015GC006199.  * current PhD student
47J. Yu, L. Menviel, Z.D. Jin, D.J.R. Thornalley, S. Barker, G. Marino, E.J. Rohling, Y. Cai, F. Zhang, X. Wang, Y. Dai, P. Chen, W.S. Broecker, (2016) Sequestration of carbon in the deep Atlantic during the last glaciation, Nature Geoscience, doi: 10.1038/ngeo2657. press release: SBS, ANU
46Zhangdong Jin, A. Joshua West, Fei Zhang, Zhisheng An, Robert G. Hilton, Jimin Yu, Jin Wang, Gen Li, and Xulong Wang, (2016) Seismically enhanced solute fluxes link silicate weathering with tectonic activity, Geology, doi:10.1130/G37246.1, v. 44; no. 1; p. 47–50.
45G. Marino, E. J. Rohling, L. Rodrı´guez-Sanz, K. M. Grant, D. Heslop, A. P. Roberts, J. D. Stanford & J. Yu, (2015) Bipolar seesaw control on last interglacial sea level, Nature, doi:10.1038/nature14499.
44D. J. R. Thornalley, H. A. Bauch, G. Gebbie, W. Guo,  M. Ziegler, S. M. Bernasconi, S. Barker, L. C. Skinner, J. Yu, (2015) Awarm and poorly ventilated deep Arctic Mediterranean during the last glacial period, Science, 349(6249):706-710.
43Broecker W.S., Yu J. and Putnam A.E., (2015) Two contributors to the glacial CO2 decline, Earth Planet. Sci. Lett., 429: 191-196.
42Jin Z.D., An Z., Yu J., Li F., and Zhang F., (2015) Lake Qinghai sediment geochemistry linked to hydroclimate variability since the last glacial, Quat. Sci. Rev., 122:63-73.
41Zhang F., Jin Z.D., Yu J., Zhou Y., and Zhou L., (2015) Hydrogeochemical processes between surface and groundwaters on the northeastern Chinese Loess Plateau: Implications for water chemistry and environmental evolutions in semi-arid regions, Journal of Geochemical Exploration, http://dx.doi.org/10.1016/j.gexplo.2015.08.010.
40Jimin Yu, Henry Elderfield, Zhangdong Jin, Paul Tomascak, Eelco J. Rohling, (2014) Controls on Sr/Ca in benthic foraminifera and implications for seawater Sr/Ca during the late Pleistocene, Quat. Sci. Rev., DOI: 10.1016/j.quascirev.2014.05.018.
39Yu J., Anderson R.F., Jin Z.D., Menviel L., Zhang F., Ryerson F.J., Rohling E.J., (2014) Deep South Atlantic carbonate chemistry and increased interocean deep water exchange during last deglaciation, Quat. Sci. Rev. 10.1016/j.quascirev.2014.02.018.
38Yu J., Anderson R.F., Rohling E.J., (2014) Deep ocean carbonate chemistry and glacial-interglacial atmospheric CO2 changes.  Oceanography 27(1), 16-25, http://dx.doi.org/10.5670/oceanog.2014.04.
37S. Kender, J. Yu and V.L. Peck, (2014) Deep ocean carbonate ion increase during mid Miocene CO2 decline, Scientific Reports, doi: 10.1038/srep04187.
36Menviel L., England M.H., Meissner K.J., Mouchet A., and Yu J., (2014) Atlantic-Pacific seesaw and its role in outgassing CO2 during Heinrich events. Paleoceanography. doi: 10.1002/2013PA002542.
35Yu J., Anderson R.F., Jin Z.D., Rae J., Opdyke B.N., Eggins S., (2013). Responses of the deep ocean carbonate system to carbon reorganization during the Last Glacial–interglacial cycle, Quat. Sci. Rev. 76, 39-52. http://dx.doi.org/10.1016/j.quascirev.2013.06.020.
34Yu J., Thornalley D.J.R., Rae J.W.B., and McCave I.N., (2013). Calibration and application of B/Ca, Cd/Ca and d11B in Neogloboquadrina pachyderma (sinistral) to constrain CO2 uptake in the subpolar North Atlantic during the last deglaciation, Paleoceanography, doi: 10.1029/2012PA002432.
33Zhang F., Jin Z.D., Li F., Yu J., and Xiao J., (2013). Controls on seasonal variations of silicate weathering and CO2 consumption in two river catchments on the NE Tibetan Plateau, Journal of Asian Earth Sciences, 62:547-560
32Zhang F., Jin Z.D., Li F., Yu J., You C.F., Zhou L., (2013). The dominance of loess weathering on water and sediment chemistry within the Daihai Lake catchment, northeastern Chinese Loess Plateau, Applied Geochemistry, 35, 51-63.
31Piotrowski, A.M.,  Galy, A.,  Nicholl, J.A.L., Roberts, N., Wilson, D. J.,  Clegg, J. and Yu, J., (2012). Reconstructing deglacial North and South Atlantic deep water source using foraminiferal Nd isotopes. Earth and Planetary Science Letters, 357-358: 289-297.
30Broecker, W.S. and Yu, J. (2011), What do we know about the evolution of Mg to Ca ratios in seawater?, Paleoceanogr., doi:10.1029/2011PA002120.
29Johnstone, H., Yu, J., Elderfield, H. and Schulz, M. (2011), Improving temperature estimates derived from Mg/Ca of planktonic foraminifera using X-ray computed tomography-based dissolution index, Paleoceanogr., doi:10.1029/2010PA001940.
28Jin Z.D., You C.F., Yu J., Wu L., Zhang F., Liu H.C. (2011), Seasonal contributions of catchment weathering and eolian dust to river water chemistry, northeastern Tibetan Plateau: Chemical and Sr isotopic constraints, Journal of Geophysical Research - Earth Surface, doi:10.1029/2011JF002002
27Jin, Z., Bickle, M.J., Chapman, H.J., Yu, J., An, Z., Wang, S. and Greaves, M.J., 2011. Ostracod Mg/Sr/Ca and 87Sr/86Sr geochemistry from Tibetan lake sediments: Implications for early to mid-Pleistocene Indian monsoon and catchment weathering. Boreas, 40(2): 320-331.
26K. A. Allen, B. Hönisch, S. M. Eggins, J. Yu, H. J. Spero, H. Elderfield (2011), Controls on boron incorporation in cultured tests of the planktic foraminifer Orbulina universa. Earth Planet. Sci. Lett., doi:10.1016/j.epsl.2011.07.010.
25Chuan-Chou Shen, Chung-Che Wu, Yi Liu, Jimin Yu, Ching-Chih Chang, Doan Dinh Lam, Jain-Ru Jhou, Li Lo, Kuo-Yen Wei (2011), Measurements of Natural Carbonate Rare Earth Elements in Femtogram Quantities by Inductive Coupled Plasma Sector Field Mass Spectrometry, Analytical Chemistry, dx.doi.org/10.1021/ac201736w.
24B. Hönisch, K. A. Allen, A. D. Russell, S. M. Eggins, J. Bijma, H. J. Spero, D. W. Lea, and J. Yu (2011), Planktic foraminifers as recorders of seawater Ba/Ca. Marine Micropaleontology, doi:10.1016/j.marmicro.2011.01.003.
23Yu, J.M., Broecker, W.S., Elderfield, H., Jin, Z.D., McManus, J., Zhang, F. (2010), Loss of carbon from the deep sea since the Last Glacial Maximum, Science, doi: 10.1126/science.1193221.
22Yu, J.M., Foster, G.L., Elderfield, H., Broecker, W.S. and Clark, E. (2010), An evaluation of benthic foraminiferal B/Ca and d11B for deep ocean carbonate ion and pH reconstructions. Earth Planet. Sci. Lett., 293(1-2): 114-120.
21Yu, J.M. and Broecker, W.S. (2010), Comment on “Deep-Sea Temperature and Ice Volume Changes Across the Pliocene-Pleistocene Climate Transitions”, Science, 328, 1480c, doi:10.1126/science.1186544.
20Peck, V.L., Yu, J., Kender, S. and Riesselman, C.R. (2010), Shifting ocean carbonate chemistry during the Eocene-Oligocene climate transition: implications for deep ocean Mg/Ca-paleothermometry. Paleoceanogr.: doi:10.1029/2009PA001906.
19Palmer, M.R., Brummer, G.J., Cooper, M., Elderfield, H., Greaves, M., Reichart, G.J., Schouten, S. and Yu, J. (2010), Multi-proxy reconstruction of surface water pCO2 in the northern Arabian Sea since 29 ka. Earth Planet. Sci. Lett., 295: 49-57.
18Jin, Z.D., Bickle, M., Chapman, H., Yu, J.M., Wang, S.M. and Chen, S.Y. (2009), Early to mid-Pleistocene ostracod d18O and d13C in the central Tibetan Plateau: Implication for Indian monsoon change. Palaeogeogr. Palaeoclimatol. Palaeoecol., 280(3-4): 406-414.
17Jin, Z.D., You, C.F. and Yu, J.M. (2009), Toward a geochemical mass balance of major elements in Lake Qinghai, NE Tibetan Plateau: A significant role of atmospheric deposition. Applied Geochemistry, 24(10): 1901-1907.
16Jin, Z.D., Yu, J.M., Wang, S.M., Zhang, F., Shi, Y.W. and You, C.F. (2009), Constraints on water chemistry by chemical weathering in the Lake Qinghai catchment, northeastern Tibetan Plateau (China): clues from Sr and its isotopic geochemistry. Hydrogeology Journal, 17: 2037-2048.
15Yu, J.M., Elderfield, H. and Piotrowski, A. (2008), Seawater carbonate ion-d13C systematics and application to glacial-interglacial North Atlantic ocean circulation. Earth Planet. Sci. Lett., 271(1-4): 209-220. doi:10.1016/j.epsl.2008.04.010.
14Yu, J.M. and Elderfield, H. (2008), Mg/Ca in the benthic foraminifera Cibicidoides wuellerstorfi and Cibicidoides mundulus: Temperature versus carbonate ion saturation. Earth Planet. Sci. Lett., 276(1-2): 129-139. doi: 10.1016/j.epsl.2008.09.015.
13Yu, J.M., Elderfield, H., Jin, Z.D. and Booth, L. (2008), A strong temperature effect on U/Ca in planktonic foraminifer carbonates. Geochim. Cosmochim. Acta (72): 4988-5000.
12Yu, J.M. and Elderfield, H. (2007), Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state. Earth Planet. Sci. Lett., 258(1-2): 73-86.
11Yu, J.M., Elderfield, H., Greaves, M. and Day, J. (2007), Preferential dissolution of benthic foraminiferal calcite during laboratory reductive cleaning. Geochem. Geophys. Geosyst., 8: Q06016, doi:10.1029/2006GC001571.
10Yu, J.M., Elderfield, H. and Hönisch, B. (2007), B/Ca in planktonic foraminifera as a proxy for surface water pH. Paleoceanogr., 22: PA2202, doi:10.1029/2006PA001347.
9Jin, Z.D., Yu, J.M., Chen, H.X., Wu, Y.H., Wang, S.M. and Chen, S.Y. (2007), The influence and chronological uncertainties of the 8.2 ka cooling event on continental climate records in China. The Holocene, 17(7): 1041-1050.
8Elderfield, H., Yu, J.M., Anand, P., Kiefer, T. and Nyland, B. (2006), Calibrations for benthic foraminiferal Mg/Ca palaeothermometry and the carbonate ion hypothesis. Earth Planet. Sci. Lett., 250: doi:10.1016/j.epsl.2006.07.041.
7Jin, Z.D., Bickle, M., Chapman, H., Yu, J.M., Greaves, M., Wang, S.M. and Chen, S.Y. (2006), An experimental evaluation of cleaning methods for fossil ostracod Mg/Ca and Sr/Ca determination. Journal of Paleolimnology: doi 10.1007/s10933-006-9007-8.
6Jin, Z.D., Li, F.C., Cao, J.J., Wang, S.M. and Yu, J.M. (2006), Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: Implications for provenance, sedimentary sorting, and catchment weathering. Geomorphology: doi:10.1016 /j.geomorph.2006.02.006.
5Yu, J.M., Day, J., Greaves, M. and Elderfield, H. (2005), Determination of multiple element/calcium ratios in foraminiferal calcite by quadrupole ICP-MS. Geochem. Geophys. Geosyst., 6: Q08P01, doi:10.1029/2005GC000964.
4Jiang, S.Y., Yu, J.M. and Lu, J.J. (2004), Trace and rare-earth element geochemistry in tourmaline and cassiterite from the Yunlong tin deposit, Yunnan, China: implication for migmatitic–hydrothermal fluid evolution and ore genesis. Chem. Geol., 209: 193-213.
3Yu, J.M. and Jiang, S.Y. (2003), Chemical compositions of tourmaline from the Yunlong tin deposit, Yunnan, China: Implication for ore genesis and mineral exploration. Mineralogy and Petrology, 77(1-2): 67-84.
2Jiang, S.Y., Woodhead, J., Yu, J.M., Pan, J.Y., Liao, Q.L. and Wu, L.P. (2002), A reconnaissance of Cu isotopic compositions of hydrothermal vein-type copper deposit, Jinman, Yunnan, China. Chinese Science Bulletin, 47(3): 247-250.
1Yu, J.-M., Jiang, S.-Y., Pan, J.-Y., Ni, P. (2001), Fluid inclusion and stable isotope study on the Yunlong tin deposit, Western Yunnan, China. Bulletin of Mineralogy Petrology and Geochemistry, 20(4):373-375.